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Finding Structure in Data



Pattern Matching

❖ Finding all instances of a pattern within a string

ABCD

ABCAABCDAACAABCDBCABCDADDDEAEABCDA

❖ Knuth-Morris-Pratt’70



Palindrome

❖ A string that reads the same forwards and backwards

❖Manacher’75

❖ 𝑆 = 𝑆𝑅

❖ RACECAR

❖ RACECAR

❖ AIBOHPHOBIA

❖ AIBOHPHOBIA



Alignment

❖ For strings 𝑆 and 𝑇, indices 𝑖, 𝑗, and a metric 𝑑𝑖𝑠𝑡: 𝑆 and 𝑇 have an 
alignment of length 𝑖 − 𝑗 + 1 if 𝑆 𝑖, 𝑗 = 𝑇[𝑖, 𝑗]

❖ 𝑆 = ALGORITHM

❖ 𝑇 = LOGARITHM



Periodicity

❖ A portion of a string that repeats

ABCDABCDABCDABCD

ABCDABCDABCDABCD



Streaming Model

❖ String of length 𝑛 arrives one symbol at a time

❖ Use 𝑜(𝑛) space, ideally 𝑂(𝑝𝑜𝑙𝑦𝑙𝑜𝑔 𝑛)

abaacabaccbabbbcbabbccababbccb

abaacabaccbabbbcbabbccababbccb

abaacabaccbabbbcbabbccababbccb



Finding Structure in Noisy Data



Palindrome

❖ A string that reads the same forwards and backwards

❖ 𝑆 = 𝑆𝑅

❖ RACECAR

❖ RACECAR

❖ AIBOHPHOBIA

❖ AIBOHPHOBIA



𝑑-Near-Palindrome

❖ A string that “almost” reads the same forwards and backwards

❖ Given a metric 𝑑𝑖𝑠𝑡, a 𝑑-near-palindrome has 𝑑𝑖𝑠𝑡 𝑆, 𝑆𝑅 ≤ 𝑑.

❖ RACECAR

❖ FACECAR



Hamming Distance

❖ Given strings 𝑋, 𝑌, the Hamming distance between 𝑋 and 𝑌 is 
defined as the positions 𝑖 at which 𝑋𝑖 ≠ 𝑌𝑖.

❖ 𝑆 = FACECAR

❖ 𝑆𝑅 = RACECAF

❖ HAM(𝑆, 𝑆𝑅) = 2



Longest 𝑑-Near-Palindrome Problem

❖ Given a string 𝑆 of length 𝑛, which arrives in a data stream, identify 
the longest 𝑑-near-palindrome in space 𝑜 𝑛 .

❖ Given a string 𝑆 of length 𝑛, which arrives in a data stream, find a 
“long” 𝑑-near-palindrome in space 𝑜 𝑛 .



Related Work

❖ 𝑂(log 𝑛) space to provide a 1 + 𝜀 multiplicative approximation to 
the length of the longest palindrome (Berenbrink,Ergün,Mallmann-
Trenn,Sadeqi Azer ‘14) 

❖ 𝑂( 𝑛) space to provide a 𝑛 additive approximation to the length 
of the longest palindrome (BEMS14)

❖ 𝑂( 𝑛) space to find the longest palindrome in two passes (BEMS14)

❖ Ω
log 𝑛

𝜀 log(1+𝜀)
space for 1 + 𝜀 multiplicative approximation 

(GMSU16)

❖ Ω
𝑛

𝐸
space for 𝐸 additive approximation (GMSU16)



Our results

❖ 𝑂
𝑑 log7 𝑛

𝜀 log(1+𝜀)
space to provide a 1 + 𝜀 multiplicative 

approximation to the length of the longest 𝑑-near-palindrome 

❖ 𝑂(𝑑 𝑛 log6 𝑛) space to provide a 𝑛 additive approximation to the 
length of the longest 𝑑-near-palindrome 

❖ 𝑂(𝑑2 𝑛 log6 𝑛) space to find the longest 𝑑-near-palindrome in two 
passes

❖ Ω 𝑑 log 𝑛 space LB for 1 + 𝜀 multiplicative approximation

❖ Ω
𝑑𝑛

𝐸
space LB for 𝐸 additive approximation



Comparison
Longest Palindrome Longest 𝑑-Near-

Palindrome (Here)

1 + 𝜀 multiplicative 𝑂(log2 𝑛) (BEMS14)
𝑂

𝑑 log7 𝑛

𝜀 log(1 + 𝜀)

𝑛 additive 𝑂( 𝑛 log 𝑛) (BEMS14) 𝑂(𝑑 𝑛 log6 𝑛)

two pass exact 𝑂( 𝑛 log 𝑛) (BEMS14) 𝑂(𝑑2 𝑛 log6 𝑛)

1 + 𝜀 multiplicative LB Ω
log 𝑛

log(1+𝜀)
(GMSU16) Ω 𝑑 log 𝑛

E additive LB Ω
𝑛

𝐸
(GMSU16) Ω

𝑑𝑛

𝐸



Warm-up

❖ Suppose we see string 𝑆, followed by string 𝑇. How can we 
determine if 𝑆 = 𝑇, with high probability?



Karp-Rabin Fingerprints

❖ Given base 𝐵 and a prime 𝑃, define 𝜙 𝑆 = σ𝑖=1
𝑛 𝐵𝑖𝑆 𝑖 𝑚𝑜𝑑 𝑃

❖ If 𝑆 = 𝑇, then 𝜙 𝑆 = 𝜙 𝑇

❖ If 𝑆 ≠ 𝑇, then 𝜙 𝑆 ≠ 𝜙 𝑇 w.h.p. (Schwartz-Zippel)



Properties of Karp-Rabin Fingerprints

❖ 𝜙 𝑆[1: 𝑦] = 𝜙 𝑆[1: 𝑥] + 𝐵𝑥𝜙 𝑆[𝑥: 𝑦]

❖ Define 𝜙𝑅 𝑆 = σ𝑖=1
𝑛 𝐵−𝑖𝑆 𝑖 𝑚𝑜𝑑 𝑃

❖ 𝜙 𝑆𝑅[1: 𝑥] = 𝐵𝑥+1𝜙𝑅 𝑆[1: 𝑥]

❖ 𝜙𝑅 𝑆[1: 𝑦] = 𝜙𝑅 𝑆[1: 𝑥] + 𝐵−𝑥𝜙𝑅 𝑆[𝑥: 𝑦]



Identifying Palindromes

❖ 111101011100001010010101001111101011100001010010101001

❖ 111101011100001010010101001111101011100001010010101001



Identifying Near-Palindromes?

❖ 111101011100001010010101001111101011100001010010101001

❖ 111101011100001010010101001111101011100001010010101001



Identifying Near-Palindromes?

❖ 111101011100001010010101001111101011100001010010101001

❖ 111101011100001010010101001111101011100001010010101001



Identifying Near-Palindromes? (CFP+16)



Karp-Rabin Fingerprints for subpatterns

❖ 𝑆𝑎,𝑏 = 𝑆 𝑎 𝑆 𝑎 + 𝑏 𝑆 𝑎 + 2𝑏 𝑆 𝑎 + 3𝑏 …

❖ 𝜙𝑎,𝑏 𝑆 = 𝜙 𝑆𝑎,𝑏 = 𝐵 ∗ 𝑆 𝑎 + 𝐵2 ∗ 𝑆 𝑎 + 𝑏 + 𝐵3 ∗ 𝑆 𝑎 + 2𝑏 …



Identifying Near-Palindromes?

❖ Let ∆ = # 𝑎 𝜙𝑎,𝑏 𝑆 ≠ 𝐵𝑘𝜙𝑎,𝑏
𝑅 𝑆 (𝑚𝑜𝑑 𝑃)}

❖ Then ∆ ≤ HAM(𝑆, 𝑆𝑅)



Identifying Near-Palindromes?

❖ Sample log 𝑛 primes 𝑝1, 𝑝2, … from 16 𝑑 log2 𝑛, 544 𝑑 log2 𝑛 . 

❖ Let ∆ = max # a 𝜙𝑎,𝑝𝑖 𝑆 ≠ 𝐵𝑘𝜙𝑎,𝑝𝑖
𝑅 𝑆 (𝑚𝑜𝑑 𝑃)}

❖ ∆ ≤ HAM(𝑆, 𝑆𝑅)

❖ If HAM 𝑆, 𝑆𝑅 > 2𝑑, then ∆ > 1 +
1

16
𝑑 w.h.p. (CFP+16)

What about
HAM 𝑆, 𝑆𝑅 ≤ 2𝑑? 



Karp-Rabin Fingerprints for sub-subpatterns



Second level Karp-Rabin Fingerprints 

❖ Call a mismatch isolated under 𝑝𝑖 if it is the only mismatch under 
some subpattern 𝑆𝑎,𝑝𝑖. Let 𝐼 be the number of isolated mismatches.

❖ If HAM 𝑆, 𝑆𝑅 ≤ 2𝑑, then 𝐼 = HAM 𝑆, 𝑆𝑅 w.h.p. (CFP+16)



In review

❖ There exists a data structure of size 𝑂 𝑑 log6 𝑛 bits which 
recognizes whether HAM 𝑆, 𝑆𝑅 ≤ 𝑑 w.h.p.



Additive Error Algorithm

❖ Initialize a data structure every 
𝑛

2
positions!



Additive Error Algorithm

❖
𝑛

2
sketches, each of size 𝑂 𝑑 log6 𝑛 bits

❖ Total space: 𝑂 𝑑 𝑛 log6 𝑛 bits



2-Pass Exact Algorithm

❖ Can we modify 1-pass additive algorithm to 2-pass exact?

❖Missing characters before checkpoint!



2-Pass Exact Algorithm

❖ Idea: keep all characters before each checkpoint in the second pass

❖What if there are 𝑂 𝑛 candidates?

❖ Structural result of palindromes (BEMS14)



Structural Result of Palindromes (BEMS14)



Structural Result of Palindromes (BEMS14)



Structural Result of Palindromes (BEMS14)



Structural Result of Palindromes (BEMS14)



Structural Result of Palindromes (BEMS14)



Structural Result of Palindromes (BEMS14)



Structural Result of Palindromes (BEMS14)



Structural Result of Near-Palindromes

❖ Not quite periodic (at most 2𝑑 − 1 different words)

❖ Need to save at most 2𝑑 − 1 fingerprints of words



2-Pass Exact Algorithm

❖ Not quite periodic (at most 2𝑑 − 1 different words)

❖ Need to save at most 2𝑑 − 1 fingerprints of words



2-Pass Exact Algorithm

❖ First pass: 𝑂 𝑑2 𝑛 log7 𝑛 bits

❖ At most 2𝑑 − 1 fingerprints, each of size 𝑂 𝑑2 log6 𝑛 words

❖ Need to save at 𝑛 characters before 2𝑑 − 1 checkpoints: 𝑂 𝑑 𝑛

❖ Total space: 𝑂 𝑑2 𝑛 log7 𝑛 bits



Multiplicative Lower Bounds

❖ Yao’s Principle: to show that any randomized algorithm fails, show 
that every deterministic algorithm fails over random inputs

❖ Let 𝜈 be the prefix of 10110011100011110000… = 11011202…
of length 

𝑛

4
(GMSU16).

❖ Take 𝑥 ∈ 𝑋 = strings of length
𝑛

4
with weight 𝑑

❖ Take 𝑦 ∈ 𝑌 = 𝑦 | HAM 𝑥, 𝑦 = 𝑑 or HAM 𝑥, 𝑦 = 𝑑 + 1

❖ Define 𝑠 𝑥, 𝑦 = 𝜈𝑅𝑥𝑦𝑅𝜈.



Multiplicative Lower Bounds

YES:
If HAM 𝑥, 𝑦 ≤ 𝑑, 
then the longest 𝑑-
near-palindrome of 
𝑠 𝑥, 𝑦 has length 𝑛.

NO:
If HAM 𝑥, 𝑦 > 𝑑, 
then the longest 𝑑-
near-palindrome of 
𝑠 𝑥, 𝑦 has length at 

most 200𝑑2 +
𝑛

2
.



Multiplicative Lower Bounds

❖ A 1 + 𝜀 multiplicative algorithm differentiates whether 
HAM 𝑥, 𝑦 ≤ 𝑑 or HAM 𝑥, 𝑦 > 𝑑.

❖ Just need to show cannot differentiate whether HAM 𝑥, 𝑦 ≤ 𝑑 or 
HAM 𝑥, 𝑦 > 𝑑 in 𝑜(𝑑 log 𝑛) space!



Multiplicative Lower Bounds

❖ Save 𝑥 in 
𝑑 log 𝑛

3
bits.

❖ Since 𝑥 ∈ 𝑋 = strings of length
𝑛

4
with weight 𝑑 , there are 

|𝑋|

4
pairs (𝑥, 𝑥′) which are mapped to the same configuration. 



Multiplicative Lower Bounds

❖ Let 𝐼 be the set of indices for which 𝑥𝑖 = 1 or 𝑥𝑖
′ = 1

❖ Suppose HAM 𝑥, 𝑦 = 𝑑 but 𝑦 does not differ from 𝑥 in 𝐼

❖ 𝑥: 101100000010001000000100100000

❖ 𝑥’: 100000010010101000000100100000

❖ 𝑦: 111101100010001011100100100010

❖ Then HAM 𝑥′, 𝑦 > 𝑑!

❖ Errs on either 𝑠 𝑥, 𝑦 or 𝑠 𝑥′, 𝑦 .

???



Multiplicative Lower Bounds

❖ There are 
|𝑋|

4
values of 𝑥 mapped to the wrong configuration, each 

with 
𝑛

4
− 2𝑑

𝑑
values of 𝑦, where algorithm is incorrect.

❖ Probability of failure:

|𝑋|
4

𝑛
4
− 2𝑑

𝑑

𝑋 |𝑌|
≥
1

𝑛



In review

❖ Provided a distribution over which any deterministic algorithm with 
𝑜(𝑑 log 𝑛) bits fails to distinguish HAM 𝑥, 𝑦 ≤ 𝑑 or HAM 𝑥, 𝑦 > 𝑑

at least 
1

𝑛
of the time 

❖ A 1 + 𝜀 multiplicative algorithm differentiates whether 
HAM 𝑥, 𝑦 ≤ 𝑑 or HAM 𝑥, 𝑦 > 𝑑

❖ Showed every deterministic algorithm fails over random inputs



Additive Lower Bounds

❖ Define 𝑠 𝑥, 𝑦 = 1𝐸𝑥11
𝐸

𝑑𝑥21
𝐸

𝑑𝑥3…𝑥𝑛′
2

𝑦𝑛′
2

…𝑦31
𝐸

𝑑𝑦21
𝐸

𝑑𝑦11
𝐸

❖ Take 𝑥 ∈ 𝑋 = all strings of length
𝑛′

2

❖ Take 𝑦 ∈ 𝑌 = HAM 𝑥, 𝑦 = 𝑑 or HAM 𝑥, 𝑦 = 𝑑 + 1



Questions?

51



𝑑-Near-Alignment

❖ For strings 𝑆 and 𝑇, indices 𝑖, 𝑗, and a metric 𝑑𝑖𝑠𝑡: 𝑆 and 𝑇 have a 𝑑-
near-alignment of length 𝑖 − 𝑗 + 1 if 𝑑𝑖𝑠𝑡 𝑆[𝑖, 𝑗], 𝑇[𝑖, 𝑗] ≤ 𝑑.

❖ 𝑆 = RACECAR

❖ 𝑇 = FACECAR



Edit (Levenshtein) Distance

❖ Given strings 𝑋, 𝑌, the edit distance between 𝑋 and 𝑌 is defined as 
the minimum number of deletions, insertions, and substitutions 
performed on 𝑋 to obtain 𝑌.

❖ 𝑆 = 1010101010101010

❖ 𝑇 = 0101010101010101

❖ HAM 𝑆, 𝑇 = 16

❖ ed 𝑆, 𝑇 = 2



Edit (Levenshtein) Distance

❖ Classical offline solution: dynamic programming 𝑂(𝑛2) time (WF74)

❖ Cannot be computed in 𝑂(𝑛2−𝛿) time assuming SETH (BI15)

❖ Any linear sketch which distinguishes the cases ed 𝑥, 𝑦 = 2 and 
ed 𝑥, 𝑦 = 1 requires Ω(𝑛) space (AGMP13)



Longest 𝑑-Near-Alignment Problem

❖ Given strings 𝑆 and 𝑇 of length 𝑛, which arrive in a data stream, 
identify the longest 𝑑-near-alignment in space 𝑜 𝑛 .

❖ Given strings 𝑆 and 𝑇 of length 𝑛, which arrive simultaneously in a 
data stream, identify the longest 𝑑-near-alignment in space 𝑜 𝑛 .



Results (All Edit Distance)

❖ 𝑂
𝑑 log 𝑛

𝜀 log(1+𝜀)
space to provide a 1 + 𝜀 multiplicative 

approximation to the length of the 𝑑-near-alignment (simultaneous) 

❖ 𝑂
𝑑𝑛 log 𝑛

𝐸
space to provide an 𝐸 additive approximation to the 

length of the 𝑑-near-alignment (simultaneous)

❖ 𝑂(𝑑2 + 𝑑 log 𝑛) space to find the longest 𝑑-near-alignment 
(simultaneous)

❖ Ω 𝑑 log 𝑛 space LB for 1 + 𝜀 multiplicative approximation in 
streaming model



Longest 𝑑-Near-Alignment

❖ Observation #1: If 𝑑 + 1 consecutive characters in 𝑆 are matched to 
𝑑 + 1 consecutive characters in 𝑇, no character before the region can 
be matched to a character after the region by any other alignment 



Longest 𝑑-Near-Alignment

❖ Observation #2: If 𝑑 + 1 2 consecutive characters in 𝑆 and 𝑇 does 
not contain a region (of length 𝑑 + 1), then it requires 𝑑 edit 
operations to be aligned 



Longest 𝑑-Near-Alignment

❖ Sliding window of size 𝑑 + 1 2 identifies either the most recent 
region or the most recent 𝑑 edit operations 



Longest 𝑑-Near-Alignment

❖ Algorithm keeps the most recent 𝑑 edit operations, location of the 
latest region, and the sliding window of size 𝑑 + 1 2

❖ Edit operations before the region are fixed



Longest 𝑑-Near-Alignment

❖Window of size 𝑑 + 1 2

❖ Locations of 𝑑 edit operations, each requiring space 𝑂(log 𝑛)

❖ Total space: 𝑂(𝑑2 + 𝑑 log 𝑛)



Questions?

62



Periodicity

❖ A portion of a string that repeats

ABCDABCDABCDABCD

ABCDABCDABCDABCD



Periodicity

❖ Alternate definition: prefix is the same as suffix

❖ If 𝑆 has length 𝑛, and 𝑆 1: 𝑛 − 𝑝 = 𝑆 𝑝 + 1: 𝑛 , then we say 𝑆 has 
period 𝑝.

ABCDABCDABCDABCD

ABCDABCDABCD

ABCDABCDABCD

ABCDABCDABCDABCD



Hamming Distance

❖ Given strings 𝑋, 𝑌, the Hamming distance between 𝑋 and 𝑌 is 
defined as the positions 𝑖 at which 𝑋𝑖 ≠ 𝑌𝑖.

𝑆 = HAMMING

𝑇 = FALLING

𝐻𝐴𝑀(𝑆, 𝑇) = 3



𝑘-Periodicity

❖ A string that is “almost” periodic, robust to 𝑘 changes.

❖ Periodicity: 𝑆 1: 𝑛 − 𝑝 = 𝑆 𝑝 + 1: 𝑛

❖ 𝑘-Periodicity: HAM 𝑆 1: 𝑛 − 𝑝 , 𝑆 𝑝 + 1, 𝑛 ≤ 𝑘.
ABCDABCDABCEABCE
ABCDABCDABCEABCE
ABCDABCDABCE
ABCDABCEABCE
ABCDABCDABCEABCE

❖ Long term periodic changes, but also encompasses “natural” 
definition. 

1-period: 4



𝑘-Periodicity Problem

❖ Given a string 𝑆 of length 𝑛, which arrives in a data stream, identify 
the smallest 𝑘-period in space 𝑜 𝑛 .

❖ Given a string 𝑆 of length 𝑛, which arrives in a data stream, identify 
the smallest 𝑘-period in space 𝑜 𝑛 , with two passes.



Related Work

❖ 𝑂(log2 𝑛) space to find the shortest period in one-pass, if 𝑝 ≤
𝑛

2
. 

(ErgunJowhariSaglam10)

❖ Ω 𝑛 space to find the period in one-pass, if 𝑝 >
𝑛

2
. (EJS10)

❖ 𝑂(log2 𝑛) space to find the shortest period in two-passes, even if 
𝑝 >

𝑛

2
. (EJS10)

❖ 𝑘-Mismatch Problem: 𝑂 𝑘2 log8 𝑛 space to find all instances of a 
pattern 𝑃 within a text 𝑇 with up to 𝑘 errors. 
(CliffordFontainePoratSachStarikovskaya16)



𝑘-Periodicity (Our results)

❖ 𝑂(𝑘4 log9 𝑛) space to find the shortest 𝑘-period in one-pass, if 𝑝 ≤
𝑛

2
.

❖ 𝑂(𝑘4 log9 𝑛) space to find the shortest 𝑘-period in two-passes, even 
if 𝑝 >

𝑛

2
. 

❖ Ω 𝑛 space to find the 𝑘-period, if 𝑝 >
𝑛

2
, in one-pass.

❖ Ω 𝑘 log 𝑛 space to find the 𝑘-period, even if 𝑝 ≤
𝑛

2
, in one-pass.



Ideas from Streaming Periodicity

❖ A period 𝑝 satisfies 𝑆 1: 𝑛 − 𝑝 = 𝑆 𝑝 + 1, 𝑛 .

❖ If 𝑝 ≤
𝑛

2
, then 𝑆 1:

𝑛

2
= 𝑆 𝑝 + 1, 𝑝 +

𝑛

2
.

ABCDABCDABCDABCD

ABCDABCDABCDABCD

ABCDABCDABCDABCD

ABCDABCDABCDABCD

❖ If 𝑝 >
𝑛

2
, then for some 𝑚, 𝑆 1: 2𝑚 = 𝑆 𝑝 + 1, 𝑝 + 2𝑚 .



Karp-Rabin Fingerprints

❖ Given base 𝐵 and a prime 𝑃, define 𝜙 𝑆 = σ𝑖=1
𝑛 𝐵𝑖𝑆 𝑖 𝑚𝑜𝑑 𝑃

❖ If 𝑆 = 𝑇, then 𝜙 𝑆 = 𝜙 𝑇

❖ If 𝑆 ≠ 𝑇, then 𝜙 𝑆 ≠ 𝜙 𝑇 w.h.p. (Schwartz-Zippel)



Ideas from Streaming Periodicity

❖ First pass: Find all positions 𝑝 such that first 
𝑛

2
characters match.

𝑆 1:
𝑛

2
= 𝑆 𝑝 + 1, 𝑝 +

𝑛

2
.

ABCDABCDABCDABCD

ABCDABCDABCDABCD

❖ Second pass: For each 𝑝, check whether 𝑝 is a 𝑘-period.

𝑆 1: 𝑛 − 𝑝 = 𝑆 𝑝 + 1, 𝑛 .

ABCDABCDABCDABCD

ABCDABCDABCDABCD



Overall Idea

❖ A period 𝑝 satisfies HAM 𝑆 1: 𝑛 − 𝑝 , 𝑆 𝑝 + 1, 𝑛 ≤ 𝑘.

❖ If 𝑝 ≤
𝑛

2
, then HAM 𝑆 1:

𝑛

2
, 𝑆 𝑝 + 1, 𝑝 +

𝑛

2
≤ 𝑘.

❖ First pass: Find all positions 𝑝 that match the first 
𝑛

2
characters.

HAM 𝑆 1:
𝑛

2
, 𝑆 𝑝 + 1, 𝑝 +

𝑛

2
≤ 𝑘.

❖ Second pass: For each 𝑝, check whether 𝑝 is a 𝑘-period.

HAM 𝑆 1: 𝑛 − 𝑝 , 𝑆 𝑝 + 1, 𝑛 ≤ 𝑘. 

❖ Reduction to Pattern Matching / 𝑘-Mismatch



First Pass to Second Pass?

❖ First pass: Find all positions 𝑝, “candidate” 𝑘-periods.

HAM 𝑆 1:
𝑛

2
, 𝑆 𝑝 + 1, 𝑝 +

𝑛

2
≤ 𝑘.

❖ Second pass: For each 𝑝, check whether 𝑝 is a 𝑘-period.

HAM 𝑆 1: 𝑛 − 𝑝 , 𝑆 𝑝 + 1, 𝑛 ≤ 𝑘.

❖ ABCDABCDABCDABCDABCD

❖ Candidate positions 𝑝 = 4,8,12,16,… . 

❖ Candidates form an arithmetic progression!



First Pass to Second Pass?

❖ If 𝑝 and 𝑞 are periods, then 𝑑 = gcd(𝑝, 𝑞) is a period.

❖ Does not work for 𝑘-periodicity!

❖ AAAABA, 𝑘 = 1

❖ 𝑝 = 2: AAAABA, AAAABA
AAAA
AABA

❖ 𝑝 = 3: AAAABA, AAAABA
AAA
ABA

❖ 𝑝 = 1: AAAABA, AAAABA
AAAAB
AAABA

1 mismatch

1 mismatch

2 mismatches!



First Pass to Second Pass?

❖ Periodicity: Candidate positions 𝑝 = 4,8,12,16, …
What’s actually happening in the second pass?

Using 𝑆 1: 4 , 𝑆 5: 8 , 𝑆 9: 12 ,… to build 𝑆 5: 𝑛 , 𝑆 9: 𝑛 , 𝑆 13: 𝑛 ,…

Can do this because 𝑆 1: 4 , 𝑆 5: 8 , 𝑆 9: 12 are all the same!

❖ 𝑘-periodicity: Candidate positions 𝑝 = 8,16,20,28,32… ?

❖ Attempt: Candidate positions 𝑝 = 4,8,12,16,20,24,28,32… ?
Can still do above construction if “most” of 𝑆 1: 4 , 𝑆 5: 8 , 𝑆 9: 12 are the 
same

Not sure if true…



First Pass to Second Pass?

❖ Candidates 𝑝 = 8,16,20,27,30,39,45,55 ?

❖ Candidates 𝑝 = 8,12,16,20}, 27,30,33,36,39 , {45,50,55



Structural Results

❖ If 𝑝 and 𝑞 are periods, then 𝑑 = gcd(𝑝, 𝑞) is a period.

❖ If 𝑝 and 𝑞 are “small”, then 𝑑 = gcd(𝑝, 𝑞) is a 𝑂(𝑘2)-period.

➢ At most 𝑂 𝑘2 of the substrings 𝑆 1: 𝑑 , 𝑆 𝑑 + 1: 2𝑑 , 𝑆[
]

2𝑑 +
1: 3𝑑 , can be different



Structural Results

❖ If 𝑝 and 𝑞 are “small”, then 𝑑 = gcd(𝑝, 𝑞) is a 𝑂(𝑘2)-period.

❖ Consider the indices as a grid. 𝑖 𝑖 + 𝑞

𝑖 + 𝑝

𝑖 − 𝑞

𝑖 − 𝑝

If there are at most 𝑘 indices 𝑖 such that 𝑆[
]

𝑖] ≠
𝑆[𝑖 + 𝑝 , and at most 𝑘 indices 𝑗 such that 
𝑆 𝑗] ≠ 𝑆[𝑗 + 𝑞 , then there are at most 𝑂(𝑘2)
indices 𝑙 such that 𝑆 𝑙] ≠ 𝑆[𝑙 + 𝑑 .



Structural Results

…AABAAABCCAA…

𝑝 = 3, 𝑞 = 7

❖ Bound the number of indices 𝑙 such that 
𝑆 𝑙] ≠ 𝑆[𝑙 + 𝑑 . 𝑖 𝑖 + 𝑞

𝑖 + 𝑝

𝑖 − 𝑞

𝑖 − 𝑝

A

A A

C



Structural Results

❖ Connect adjacent points with edges.

❖ “Good edge” if 𝑆 𝑖] = 𝑆[𝑖 + 𝑝 .

❖ “Bad edge” if 𝑆 𝑖] ≠ 𝑆[𝑖 + 𝑝 .

❖ If there exists a path from 𝑖 to 𝑗 which 
“hops” along good edges, then 𝑆 𝑖 = 𝑆[𝑗].

…AABAAABCCAA…

𝑝 = 3, 𝑞 = 7

…AABAAABCCAA…

𝑖 𝑖 + 𝑞

𝑖 + 𝑝

𝑖 − 𝑞

𝑖 − 𝑝

𝑖 + 𝑝 + 𝑞



Structural Results

❖ Bound the number of indices 𝑙 such that 
𝑆 𝑙] ≠ 𝑆[𝑙 + 𝑑 .

❖ If 𝑆 𝑙] ≠ 𝑆[𝑙 + 𝑑 , then 𝑙 must be 
enclosed by bad edges.

❖ There are at most 2𝑘 bad edges.

❖ How many enclosed points can there be?

If there are at most 𝑘 indices 𝑖 such that 𝑆[
]

𝑖] ≠
𝑆[𝑖 + 𝑝 , and at most 𝑘 indices 𝑗 such that 
𝑆 𝑗] ≠ 𝑆[𝑗 + 𝑞 , then there are at most 𝑂(𝑘2)
indices 𝑙 such that 𝑆 𝑙] ≠ 𝑆[𝑙 + 𝑑 .

𝑖 𝑖 + 𝑞

𝑖 + 𝑝

𝑖 − 𝑞

𝑖 − 𝑝

𝑖 + 𝑝 + 𝑞



Structural Results

❖ If there are at most 2𝑘 bad edges, 
there are 𝑂(𝑘2) enclosed points.
❖ There are 𝑂(𝑘2) indices 𝑙 such 
that 𝑆 𝑙] ≠ 𝑆[𝑙 + 𝑑 .



In review

❖ If 𝑝 and 𝑞 are “small”, then 𝑑 = gcd(𝑝, 𝑞) is a 𝑂(𝑘2)-period.

❖ Positions 𝑝 = 8,16,20,27,30,39,45,55 ?

❖ Positions 𝑝 = 8,12,16,20}, 27,30,33,36,39 , {45,50,55



In review

❖ First pass: Find all positions 𝑝 such that 

HAM 𝑆 1:
𝑛

2
, 𝑆 𝑝 + 1, 𝑝 +

𝑛

2
≤ 𝑘.

❖ Second pass: For each 𝑝, check if 

HAM 𝑆 1: 𝑛 − 𝑝 , 𝑆 𝑝 + 1, 𝑛 ≤ 𝑘. 



Open Problems

❖What can we say about these problems with other distance metrics 
(particularly, edit distance)?

❖ Can we improve the space usage? Specifically, the 𝑘4 dependence 
comes from the structural property and the 𝑘-Mismatch Problem 
algorithm.

❖ Can we find the longest 𝑑-near-alignment in space 𝑜(𝑑2)?

❖ Longest palindromic subsequence



Questions?
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