Y \ :;l SO0 “m\m“
591101 20000111011 1)

|

Pattern Matching 677790015;710107,
over Noisy Data
Streams

Samson Zhou

Finding Structure in Data

pfam storage phylogenetics alignment H;.frmn_u-nl
assen (] ljat L Way
. ical ... Y@ 11 L1001 ddbj
base
iologically eb Cids
at

uence

digital gnnotation nih

lecy]es OF@ANIS:

o X _.L l| _"r el
CD . p
T';._-._t"j:’,t‘ ~ e lack S S e RER hin
oene n S information olds gy vV
=NOSProtel R e|
yeamt ACC odon codi Lr : analysis geNOMES «rgim fr:.ldi_-:t:'l'll.l.fﬁ)

il A
k

Pattern Matching

¢ Finding all instances of a pattern within a string
ABCD
ABCAABCDAACAABCDBCABCDADDDEAEABCDA

** Knuth-Morris-Pratt’70

Palindrome

** A string that reads the same forwards and backwards
** Manacher’75
% S =Sk

s* RACECAR

s* RACECAR

“+ AIBOHPHOBIA
s AIBOHPHOBIA

Alignment

¢ For strings S and T, indices i, j, and a metric dist: S and T have an
alignment of lengthi —j + 1if S|i,j] = T[i, /]

S = ALGORITHM
¢ T = LOGARITHM

Periodicity

*** A portion of a string that repeats
ABCDABCDABCDABCD
ABCDABCDABCDABCD

Streaming Model

¢ String of length n arrives one symbol at a time
¢ Use 0(n) space, ideally O(polylog n)
abaacabaccbabbbcbabbccababbccb

abaacabaccbabbbcbabbccababbccb
abaacabaccbabbbcbabbccababbccb ‘

“\lu '.-.
\a \‘ !“ \\hx mw ‘\“.."l :

W
\ X\‘ "\\'\3 \33:" 1

\\ |
y |
I {

Palindrome

** A string that reads the same forwards and backwards
% S =S~k

s* RACECAR
s* RACECAR

s+ AIBOHPHOBIA
s AIBOHPHOBIA

d-Near-Palindrome

¢ A string that “almost” reads the same forwards and backwards
% Given a metric dist, a d-near-palindrome has dist(S,S%) < d.
** RACECAR
s* FACECAR

Hamming Distance

** Given strings X, Y, the Hamming distance between X and Y is
defined as the positions i at which X; # Y;.

% S = FACECAR
% SR = RACECAF
< HAM(S,S®) =2

Longest d-Near-Palindrome Problem

es in a data stream, identify

o(n).

** Given a string S of length
the longest d-near-palindro

** Given a string S of length n, which arrives in a data stream, find a
“long” d-near-palindrome in space o(n).

Related Work

“* O(logn) space to provide a (1 + &) multiplicative approximation to
the length of the longest palindrome (Berenbrink,Ergiin,Mallmann-
Trenn,Sadeqi Azer ‘14)

% 0(+/n) space to provide a \/n additive approximation to the length
of the longest palindrome (BEMS14)

% 0(+/n) space to find the longest palindrome in two passes (BEMS14)

& logn - : . .
XN (8 - é“g)) space for (1 4+ &) multiplicative approximation
(GMSUT6)

XY (g) space for E additive approximation (GMSU16)

Our results

o 0(dlog’ n
€ log(1+¢)

X) space to provide a (1 + &) multiplicative
approximation to the length of the longest d-near-palindrome

< 0(d+/nlog®n) space to provide a \/n additive approximation to the
length of the longest d-near-palindrome

< 0(d?*y/nlog® n) space to find the longest d-near-palindrome in two
passes

% O(d logn) space LB for (1 + &) multiplicative approximation
XN (C;—n) space LB for E additive approximation

Comparison

Longest Palindrome Longest d-Near-
Palindrome (Here)

(1 + £) multiplicative ~ 0(log® n) (BEMS14) 0 dlog’ n
glog(1 + ¢)

V1 additive 0(y/nlogn) (BEMS14) 0(d+/nlog®n)

two pass exact 0(y/nlogn) (BEMS14) 0(d?*+/nlog®n)

(1 + &) multiplicative LB Q(logn) (GMSU16) Q(d logn)
log(1+¢)

E additive LB 0 (g) (GMSU16) Q (%)
E

Warm-up

** Suppose we see string S, followed by string T. How can we
determine if S = T, with high probability?

Karp-Rabin Fingerprints

* Given base B and a prime P, define ¢(S) = Y™, B'S[i] (mod P)
o IfS =T, then ¢(S) = ¢p(T)
o If S #T,then ¢(S) # ¢(T) w.h.p. (Schwartz-Zippel)

i
7

Properties of Karp-Rabin Fingerprints

“ ¢(S[1:y]) = ¢(S[L: x]) + BXp(S[x:y])

“ Define ¢*(S) = X7, B7'S[i] (mod P)

* ¢(SR[1:x]) = B** 1R (S[1: x])

2 pR(S[1:y]) = ¢R(S[1:x]) + B~ R (S[x: y])

q—

/’\\

|
)

i
Z

|[dentifying Palindromes

4

L)

*111101011100001010010101001111101011100001010010101001
*111101011100001010010101001111101011100001010010101001

L)

4

L)

L)

|[dentifying Near-Palindromes?

4

L)

*111101011100001010010101001111101011100001010010101001
*111101011100001010010101001111101011100001010010101001

L)

4

L)

L)

|[dentifying Near-Palindromes?

4

L)

*111101011100001010010101001111101011100001010010101001
* 1111010111000 10101001111101011100001010010101001

L)

4

L)

L)

l[dentifying Near-Palindromes? (CFP+16)

Karp-Rabin Fingerprints for subpatterns

% S, = SlalS[a + b]S[a + 2b]S[a + 3b] ..
* Pap(S) = d(Sqp) =B *S[la]l + B2« S[a + b] + B3 * S[a + 2b] ...

|[dentifying Near-Palindromes?

 Let A= #{a | ¢, (S) # B¥E,(S) (mod P))
% Then A < HAM(S, S)

|[dentifying Near-Palindromgé ?

¢ Sample 10§ aes p

% Let A = max #8
A What about

R
2 1f HAM(S, HAM(S,S™) < 2d?

Karp-Rabin Fingerprints for sub-subpatterns

oL L L L L

=
R

61,3(5)

Second level Karp-Rabin Fingerprints

¢ Call a mismatch isolated under p; if it is the only mismatch under
some subpattern S, ,,.. Let I be the number of isolated mismatches.

% If HAM(S,S®) < 2d, then I = HAM(S, S®) w.h.p. (CFP+16)

In review

< There exists a data structure of size 0(d log® n) bits which
recognizes whether HAM(S, S%) < d w.h.p.

REVIEW

Additive Error Algorithm

/A

T n .y .
¢ Initialize a data structure every - positions!

Reject: NearPalindrome(c; , b)

AN
/"’-
Longest d-near-palindrome

N

Accept: NearPaIindrome[ch- ,)
AN

C; Cj a

Additive Error Algorithm

X 7" sketches, each of size 0(d log® n) bits

% Total space: 0(d+/nlog® n) bits

2-Pass Exact Algorithm

** Can we modify 1-pass additive algorithm to 2-pass exact?
*** Missing characters before checkpoint!

Reject: NearPalindrome(c; , b)

N
g ™~
Longest d-near-palindrome
.-/\-.
' N

Accept: NearPalindrome(cj,a)

e N

2-Pass Exact Algorithm

» ldea: keep all characters before each checkpoint in the second pass
¢ What if there are O(n) candidates?

s Structural result of palindromes (BEMS14)

Structural Result of Palindromes (BEMS14)

Structural Result of Palindromes (BEMS14)

Structural Result of Palindromes (BEMS14)

I

Structural Result of Palindromes (BEMS14)

r—

Structural Result of Palindromes (BEMS14)

O—

Structural Result of Palindromes (BEMS14)

Structural Result of Palindromes (BEMS14)

Structural Result of Near-Palindromes

** Not quite periodic (at most 2d — 1 different words)
** Need to save at most 2d — 1 fingerprints of words

2-Pass Exact Algorithm

** Not quite periodic (at most 2d — 1 different words)
** Need to save at most 2d — 1 fingerprints of words

2-Pass Exact Algorithm

% First pass: 0(d?+/nlog” n) bits
< At most 2d — 1 fingerprints, each of size 0(d*log® n) words
¢+ Need to save at 4/n characters before 2d — 1 checkpoints: O (d+/n)

% Total space: 0(d*+/nlog” n) bits .

X

:.‘m! -

'\, = —
v r"
W

:

Multiplicative Lower Bounds

** Yao’s Principle: to show that any randomized algorithm fails, show
that every deterministic algorithm fails over random inputs

% Let v be the prefix of 10110011100011110000 ... = 110112072 ...
of length % (GMSU16).

v Takex € X = {strings of length % with weight d}
 Takey €Y ={y | HAM(x,y) = d or HAM(x,y) = d + 1}

< Define s(x,y) = vixyfv.

Multiplicative Lower Bounds

Multiplicative Lower Bounds

* A (1 + &) multiplicative algorithm differentiates whether
HAM(x,y) < d or HAM(x,y) > d.

¢ Just need to show cannot differentiate whether HAM (x,y) < d or
HAM(x,v) > d in o(dlogn) space!

Multiplicative Lower Bounds

dlogn

** Save x in bits.

% Sincex € X = {strings of length % with weight d}, there are %

pairs (x, x") which are mapped to the same configuration.

Multiplicative Lower Bounds

“* Let I be the set of indices for which x; = 1orx; =1
¢ Suppose HAM (x, v) = d but y does not differ from x in I

“ x: 101100000010001000000100100000 m
“ x’: 100000010010101000000100100000 .

¢ y: 111101100010001011100100100010
% Then HAM(x',y) > d!
% Errs on either s(x,y) or s(x’, y).

Multiplicative Lower Bounds

. X . :
** There are % values of x mapped to the wrong configuration, each

n

. [+—2d . ..
with (4 p) values of y, where algorithm is incorrect.

*** Probability of failure:

M(%—Zd)
4 d 1
>

XYl —n

In review

» Provided a distribution over which any deterministic algorithm with
o(d logn) bits fails to distinguish HAM(x,y) < d or HAM(x,y) > d

1 .
at least ~ of the time

¢ A (1 + &) multiplicative algorithm differentiates whether
HAM(x,y) < d or HAM(x,y) > d

** Showed every deterministic algorithm fails over random inputs

'REVIEW)

Additive Lower Bounds

E E E E
< Define s(x,y) = 15x;1dx,1dx; ... x, 1y, ... y31dy,1dy, 1F

2 2
/

*Takex € X = {all strings of length %}
% Takey € Y = {HAM(x,y) = d or HAM(x,y) =d + 1}

Questions?

51

d-Near-Alignment

¢ For strings S and T, indices i, j, and a metric dist: S and T have a d-
near-alignment of length i — j + 1 if dist(S[i,j],T[i,j]) < d.

¢+ S = RACECAR
¢ T = FACECAR

Edit (Levenshtein) Distance

** Given strings X, Y, the edit distance between X and Y is defined as
the minimum number of deletions, insertions, and substitutions
performed on X to obtainY.

s S$=1010101010101010 bty oEHC)

2 T =0101010101010101 Deletelll | substitute(X) | Substitute(U)

< HAM(S,T) = 16)

% ed(S.T) = 2 | N|T E[* [N T|I |[O/N|
* [E|X E|C|U T|I O|N

Edit (Levenshtein) Distance

% Classical offline solution: dynamic programming O(n?) time (WF74)
** Cannot be computed in 0(n2_5) time assuming SETH (BI15)

% Any linear sketch which distinguishes the cases ed(x,y) = 2 and
ed(x,y) = 1 requires (n) space (AGMP13)

Longest d-Near-Alignment Problem

h arrive in a data stream,
n space o(n).

** Given strings S and T of |
identify the longest d-near

** Given strings S and T of length n, which arrive simultaneously in a
data stream, identify the longest d-near-alighment in space o(n).

Results (All Edit Distance)

o dlogn) : T
0 (8 os(1re)) SPace to provide a (1 + &) multiplicative

*
approximation to the length of the d-near-alignment (simultaneous)

. dn 1 : . L,
o 0 (- ;g n) space to provide an E additive approximation to the
length of the d-near-alignment (simultaneous)

< 0(d* + dlogn) space to find the longest d-near-alignment
(simultaneous)

% Q(d logn) space LB for (1 + &) multiplicative approximation in
streaming model

Longest d-Near-Alignment

** Observation #1: If d + 1 consecutive characters in S are matched to
d + 1 consecutive characters in T, no character before the region can
be matched to a character after the region by any other alignment

Longest d-Near-Alignment

» Observation #2: If (d + 1)? consecutive characters in S and T does
not contain a region (of length d 4+ 1), then it requires d edit
operations to be aligned

Longest d-Near-Alignment

% Sliding window of size (d + 1) identifies either the most recent
region or the most recent d edit operations

Longest d-Near-Alignment

*» Algorithm keeps the most recent d edit operations, location of the
latest region, and the sliding window of size (d + 1)?

» Edit operations before the region are fixed

Longest d-Near-Alignment

“* Window of size (d + 1)*
¢ Locations of d edit operations, each requiring space O(logn)
% Total space: 0(d? + d logn)

Questions?

62

Periodicity

*** A portion of a string that repeats
ABCDABCDABCDABCD
ABCDABCDABCDABCD

Periodicity

*» Alternate definition: prefix is the same as suffix
% If S has length n, and S[1:n — p] = S|p + 1:n], then we say S has
period p.
ABCDABCDABCDABCD
ABCDABCDABCD
ABCDABCDABCD
ABCDABCDABCDABCD

Hamming Distance

** Given strings X, Y, the Hamming distance between X and Y is
defined as the positions i at which X; # Y;.

S = HAMMING
T = FALLING

HAM(S,T) = 3

k-Periodicity

s A string that is “almost” periodic, robust to k changes.

% Periodicity: S[1:n —p] = S[p + 1:n]

% k-Periodicity: HAM(S[1:n — p],S[p + 1,n]) < k.
ABCDABCDABCEABCE
ABCDABCDABCEABCE
ABCDABCDABCE
ABCDABCEABCE
ABCDABCDABCEABCE

** Long term periodic changes, but also encompasses “natural”
definition.

1-period: 4

k-Periodicity Problem

** Given a string S of length n s in a data stream, identify

the smallest k-period in spa

.iv

** Given a string S of length n, which arrives in a data stream, identify
the smallest k-period in space o(n), with two passes.

Related Work

< 0(log? n) space to find the shortest period in one-pass, if p < g
(ErgunJowhariSaglam10)
“* Q(n) space to find the period in one-pass, if p > % (EJS10)

< 0(log? n) space to find the shortest period in two-passes, even if
p > g . (EJS10)

< k-Mismatch Problem: O (k?log® n) space to find all instances of a
pattern P within a text 7" with up to k errors.
(CliffordFontainePoratSachStarikovskaya16)

k-Periodicity (Our results)

< 0(k*log® n) space to find the shortest k-period in one-pass, if p <
n
E .
< 0(k*log® n) space to find the shortest k-period in two-passes, even
ifp > =,
2

% ((n) space to find the k-period, if p > g, in one-pass.

“* Q(klogn) space to find the k-period, even if p < g, in one-pass.

|[deas from Streaming Periodicity

“* A period p satisfies S[1:n —p] = S|p + 1,n].

%o n E — n

* prSZ,thenSll.Z_ —S[p+1,p+2].
ABCDABCDABCDABCD
ABCDABCDABCDABCD

ABCDABCDABCDABCD
ABCDABCDABCDABCD

o Ifp >§,then forsomem, S|1: 2™ =S|p+ 1,p + 2™].

Karp-Rabin Fingerprints

* Given base B and a prime P, define ¢(S) = Y™, B'S[i] (mod P)
o IfS =T, then ¢(S) = ¢p(T)
o If S #T,then ¢(S) # ¢(T) w.h.p. (Schwartz-Zippel)

i
7

|[deas from Streaming Periodicity

¢ First pass: Find all positions p such that first g characters match.

slt2=slp+1p+3.
ABCDABCDABCDABCD
ABCDABCDABCDABCD

¢ Second pass: For each p, check whether p is a k-period.
S[l:n—p]=S|p+1,n].
ABCDABCDABCDABCD
ABCDABCDABCDABCD

Overall Idea

% A period p satisfies HAM(S|1: n — p],S|p + 1,n]) < k.
%o n n n
S 1fp <= then HAM (S [1:2], S [p+ L,p +2]) < k.
¢ First pass: Find all positions p that match the first g characters.
n n
HAM (S [1:2],s[p+ Lo +3|) < k.

¢ Second pass: For each p, check whether p is a k-period.
HAM(S[1:n — p],S[p + 1,n]) < k.
¢ Reduction to Pattern Matching / k-Mismatch

First Pass to Second Pass?

¢ First pass: Find all positions p, “candidate” k-periods.
HAM (S [1:2],s[p+ Lo +3|) < k.

¢ Second pass: For each p, check whether p is a k-period.
HAM(S|1:n —p],S[p + 1,n]) < k.

** ABCDABCDABCDABCD

¢ Candidate positions p = {4,8,12,16, ... }.

+** Candidates form an arithmetic progression!

First Pass to Second Pass?

** If p and q are periods, then d = gcd(p, q) is a period.
** Does not work for k-periodicity!

s« AAAABA k =1

o p = 2: AAAABA, AAAABA

AAAA 1 mismatch
AABA

o p = 3: AAAABA, AAAABA
AAA i
ABA 1 mismatch

o p = 1: AAAABA, AAAABA
AAAAB

2 mismatches!
AAABA

First Pass to Second Pass?

¢ Periodicity: Candidate positions p = {4,8,12,16, ... }
What'’s actually happening in the second pass?
Using S|1: 4], S[5:8], S[9:12],... to build S|5:n], S[9:n], S[13:n],...
Can do this because S|1: 4], S|5:8], S[9:12] are all the same!

% k-periodicity: Candidate positions p = {8,16,20,28,32 ... }?

% Attempt: Candidate positions p = {4,8,12,16,20,24,28,32 ... }?
Can still do above construction if “most” of S[1: 4], S[5:8], $|9: 12] are the
same
Not sure if true...

First Pass to Second Pass?

% Candidates p = {8,16,20,27,30,39,45,55}?
% Candidates p = {8,12,16,20},{27,30,33,36,39},{45,50,55}

Structural Results

** If p and g are periods, then d = gcd(p, q) is a period.
< If p and q are “small”, then d = gcd(p, q) is a O(k?)-period.

> At most O (k?) of the substrings S[1:d], S[d + 1:2d], S[2d +
1: 3d], can be different

Structural Results

< If p and q are “small”, then d = gcd(p, q) is a O(k?)-period.

S[i + p], and at most k indices j such that
S[j1 # S[j + q], then there are at most 0 (k?)

\indices [such that S[I] + S[L + d].

flf there are at most k indices i such that S|i] #

~

J

+** Consider the indices as a grid.

® & ¢
I+ p

e o o

—q 1 t+g

® o o

Structural Results

..AABAAABCCAA... i P
¢ Bound the number of indices [such that A
S[1] = S[L + d. i! ® O
q L 1+¢(
® o o
L—Pp

Structural Results

** Connect adjacent points with edges.
“* “Good edge” if S[i] = S[i + p].

% “Bad edge” if S|i] + S[i + p].

¢ If there exists a path from i to j which

“hops” along good edges, then S[i| = S[j].

...AABAAABCCAA...
p=3,q9=7
..AABAAABCCAA...

VAN

[
o
o @
i —q 1
® ©
l_

p

I+ q
®

Structural Results

(If there are at most k indices i such that S|i] 7&\
S[i + pl, and at most k indices j such that i+p i+0p
S[j] # S[j + q], then there are at most 0 (k*) ®
Kindices [such that S|[] # S[l + d]. y
¢ Bound the number of indices [such that ® ®
S[l] # S[L + d]. i—q [i+g
“ If S[l] # S[l + d], then [must be
enclosed by bad edges.] i.) ®

** There are at most 2k bad edges.
¢ How many enclosed points can there be?

Structural Results

** If there are at most 2k bad edges,
there are 0(k?) enclosed points.

*» There are 0(k?) indices [such
that S|I] = S|l + d].

al

- @) -

RRRE

-Q -9 - -9

| | | | | [
-0--0--0--0-- O—®
: |1+p| | | |
-~ 0--0--0--O-- O—e
b —qgla i+ gl I i
| | | | | [
- O-- 0--0--0-- O—®
' i — pl | |
' I I I I [
I | 1 | | |

In review

< If p and q are “small”, then d = gcd(p, q) is a O(k?)-period.
* Positions p = {8,16,20,27,30,39,45,55}?
* Positions p = {8,12,16,20},{27,30,33,36,39}, {45,50,55}

'REVIEW)

In review

¢ First pass: Find all positions p such that

n

HAM (S [1:2],s[p+ Lo +3|) < k.

¢ Second pass: For each p, check if
HAM(S[1:n — p],S[p + 1,n]) < k.

'REVIEW)

Open Problems

** What can we say about these problems with other distance metrics
(particularly, edit distance)?

» Can we improve the space usage? Specifically, the k* dependence
comes from the structural property and the k-Mismatch Problem
algorithm.

» Can we find the longest d-near-alignment in space o(d?)?
** Longest palindromic subsequence

Questions?

paxmar == "Uiyabﬂﬂﬂﬂ
d kﬂmﬁﬁ'ﬂm teseKKir ederim.s W

CracnOO fistilw yinaka hlaun = 3|'||(JE misaolra Daldies grazzi ™

=5 kiitos dapkie = malundo
-2 gsanle manana
nhnuada EE

S gdhanvavad
duele e muchchakkeram =

Z kl.” nhnurakaluulmun urahasauu acies sulpay=, 0 [alhﬁ |'|'|a| amam“ﬁ l
uh[sobod [|E|(IJJ| ’ m: SUk" akgg EH"E!“!(”][EDIEZ_.G aﬂﬂal[] = dak[]]ﬂmu“llﬂﬂfﬂz

< njistuke y
-=-kamsah amnida Ele"ma kaSIh ahme 3 ioleh thanyavadagalu w ° Ukll]!ﬂ = MEPCK

T melel

padh Iaat

UHIIJIE
fvalg=E
mauruu
koszonom

haya lalaa

aku"danknn a6l

E
—t
o
.
=T}
r—

chokrane MU

’“CD

87

